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Due: October 7

(1) An ODE. Consider the following first order ordinary differential equation
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with the initial condition y(1) = 2.

.
(a) Derive a simple formula for the behavior of the solution at large x when

c = 1. Compare your solution to a numerical solution to the differential
equation and verify that it is correct.

(b) Now consider the equation with c = −1. What happens in this case?
Present both analytic arguments and numerical arguments.

(2) A higher order Differential equation
Consider the following nonlinear ordinary differential equations.
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with initial conditions y(0) = 1, y′(0) = 1, y′′(0) = 2.
(a) Solve this equation numerically.
(b) Make a plot of the absolute magnitude of each of the terms in the equation

(e.g. the terms are y′′′,
√
y, etc.

(c) Now rationalize as much of the behavior of the solution as you can. How
many different regimes are there in a dominant balance sense?

(d) Develop approximate solutions for (a) very small x and (b) for x

(3) An Integral!
Consider the following integral.
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∫ 70

0

dx

(ε+ 10x+ ex/10)
3/2

(a) Develop an analytical expression for I(ε) , for ε > 0 . You do not have to
calculate corrections to your initial estimates for I(ε) .

(b) Test your theory with numerical simulations.
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